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The first part of this paper deals with the differential equations system, which governs the laser processing of materials in 
the presence of the O2 jet, occurring on the mobile irradiation. It deals also with the hypotheses basing the equations system 
obtained. Spatial and temporally distribution of temperature inside the material is governed by the full source of temperature, 
which has been modelled by taking into consideration the fact that the irradiation is made with a CO2 laser with a “Gaussian 
distribution” of photons beam’s intensity and oxidizing energy. The second part of paper deals with the determination of 
separation frontiers equations and graphical representations of radial distribution of the temperature of the three phases: 
solid, liquid and vapours. The results thus obtained allow the determining of the technological parameters of processing and 
the material constants. 
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1. Introduction 
 
The mathematic model analysed derives from the 

thermal transfer equation in a homogeneous medium 
heathen by a laser beam. In time, the medium submitted to 
the actions of the laser presents the solid, liquid and 
vapour state separated by previously unknown frontiers. A 
simplifying model taking into consideration these 
frontiers, by considering them as having a cylindrical 
symmetry, was proposed. 

By specifying the pattern D, the initial conditions of 
the temperature and the conditions on D pattern frontiers, 
one can have the solution of thermal equation, T(x,y,z,t) 
for a certain substantial. It must mention here that the very 
same substantial has different reactions when in solid, 
liquid or vapour state and in order to obtain thermal 
distribution it is necessary to solve simultaneously thermal 
equation for each of the phases with specific initial and 
boundary conditions. It was  considered in the paper three 
phases of evolution in time of these phenomena: phase 1 
for the solid state of the substantial, phase 2 that includes 
both solid and liquid state, phase 3 in which all three solid, 
liquid and vapour states are to be found. 

The irradiated area being much smaller than the size 
of the object, the pattern D dealing with thermal equation 
may be approached as a semi-space. 

 
 
2. Equations on mathematical model 
 
Because the print of the laser beam on the surface of 

the material is circular, thermal phenomena produced 
within the substantial, have a cylindrical symmetry. Oz is 
considered as symmetry axis of the laser beam, the object 

surface equation is z = 0 and the positive sense of Oz axis 
is from the surface to the inside of the object.  

The thermal equation within cylindrical co-ordinates 
(θ,r,z) will be [1,3,4]: 
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Pattern D within thermal phenomenon are produced is 
z ≥ 0.  

In time, successions the phases the object suffers 
while cut by the laser beam are the following:  
− phase 1, for 0 ≤ t < ttop;  
− phase 2, for ttop ≤ t < tvap;  
− phase 3, for t ≥ tvap, where ttop, is the time moment 

when the melting of the material starts and tvap is the 
time moment when the process of vaporising of the 
material starts. 
The surfaces separating solid, liquid and vapour state 

are previously unknown and will be determined using the 
conditions of continuity of thermal tide on separation 
surfaces of two different substantial, knowing the 
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temperature of the separation surface and the speed of 
separation surface. 

Referring back to the three time equations, these are 
as follows: 
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( ) aT0,z,rT = , z>0               (4)  
( ) aTt,z,rT =∞                                         (5) 

 ( ) aTt,z,rT =∞                                        (6) 
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where: d is the ray of the laser beam, k1 is thermal 
conductivity that belongs to solid state, Ta is environment 
temperature, ϕS - the power tide on the surface to work on 
and K1 is the diffusivity of the material that belongs to 
solid state.  

The power tide on the processed surface belonging to 
solid state and is given by the relation [2]: 
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where: CS = (AS ⋅ PL) / πd2  (AS  - absorbability of solid 
surface; PL - the power of laser beam). 

Equation (4) represents the initial condition, equations 
(5) and (6) are limit conditions of Dirichlet type, and 
equation (7) and (8) are limit conditions of Newman type 
(thermal tide imposed on the object surface).  

Because it was assumed that the area of thermal 
influence neighbouring the cut is comparable to the width 
of the cut it may consider that r∞ ≅ 6d. Values bigger than 
the thickness of the substantial will be taken into 
consideration for z∞. 

Phase 2 - initial conditions are:  
 

( ) toptop Tt,0,0T =                                   (10) 
 

( ) ( )top1top t,z,rTt,z,rT = , z>0            (11) 
 

where: T1 is the equation solution (3) and Ttop is the 
melting temperature of the substantial. 

In order to determine limit conditions it is stipulated 
the areas taken by the liquid state, respectively the solid 
one. The frontier equation between liquid and solid state is 
considered as r = f1(z,t). By intersecting this frontier with 
plan z = 0 derives the curve r = f1(0,t).  

Identically, by intersecting the frontier with the line             
r = 0, it results z1(t) as solution of the equation   f1(z,t ) = 
0. The following areas are the results: D2 area taken by the 
liquid state is defined by r < f1(z,t) for          0 < z < z1(t); 

D1 area taken by the solid state is defined  by  r ∈ [f1(z,t), 
r∞], 0 < z < z1(t) and  r ∈ (0, r∞),                    z > z1(t). 

In D2 area thermal equation is:  
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and in D1 area thermal equation is (3).  

K2 represents the diffusivity of the substantial 
corresponding to liquid state. 

On the frontier separating the two phases, the limit 
conditions are: 
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where: T2 is the equation solution (12), k2 is thermal 
conductivity corresponding to liquid phase, ρ1 is mass 
density corresponding to liquid phase, vLn is the normal 
movement speed of the separation frontier between liquid 
and solid state, Ltop is the latent melting heat and n is the 
normal on the separation surface. 

For z = z∞, respectively r = r∞, the limit conditions are 
conditions (5) and (6). 

For z = 0 situations a) r1 ≤ d or b) r1 > d can be 
obtained.  

For situation a) the limit conditions are: 
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The next relation gives the power tide on the 
processed surface corresponding to the liquid state: 
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where: CL = (AL ⋅ PL) / πd2  (AL - absorbability on liquid 
surface). 

For situation b) the limit conditions are:  
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Phase 3 - initial conditions are: 
 

( ) vapvap Tt,0,0T =                           (21) 
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( ) ( ) ( ) ( ){ }0,0\Dz,r,t,z,rTt,z,rT 2vap2vap ∈=        (22) 
 

( ) ( ) ( ) 1vap1vap Dz,r,t,z,rTt,z,rT ∈=                      (23) 
 

where: Tvap is the vaporising temperature of the 
substantial. 

In order to determine the respective patterns it is 
considered the equations of the frontiers between liquid 
and solid state, r = f1(z,t) and r = f2(z,t) between vapour 
and liquid state. By intersecting these frontiers with plan z 
= 0 curves r1 = f1(0,t) and r2 = f2(0,t) are obtained. The 
same by intersecting the frontiers with the right       r = 0, 
z1(t), equation solution f1(z,t) = 0 and z2(t), equation 
solution f(z,t) = 0 are obtained.  

The following patterns derive in this way:  
− pattern D3 taken by vapour state is defined by          r 

< f2(z,t) for 0 < z < z2(t);  
− pattern D2 taken by liquid state is defined by     f2(z,t) 

< r < f1(z,t) for z2(t) < z < z1(t);  
− pattern D1 taken by solid state is defined by              r 

∈ (f1(z,t), r∞), 0 < z < z1(t) or r ∈ (0, r∞), z > z1(t). 
In pattern D3 thermal equation is: 
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and in pattern D2 respectively D1 equations are (3) and 
(12). K3 represent the diffusivity of the substantial 
corresponding to vapour state.  

On the separation frontier between D3 and D2 the limit 
conditions are: 
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where: T3 is the equation solution (24), k3 - thermal 
conductivity corresponding to vapour state, ρv - mass 
density corresponding to vapour state, vVn - normal 
movement speed of separation frontier between vapour 
and liquid state, Lvap - latent heat of vaporisation. 

On the separation frontier between D2 and D1 the limit 
conditions are (13) and (14). For z = z∞, respectively r = 
r∞, the limit conditions are conditions (5) and (6). On z = 0 
frontier the following situations can occur a) r1 ≤ d; b) r2 ≤ 
d and r1 > d; c) r2 > d.  

For situation a) the limit conditions are: 
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The power tide on the surface to work on 
corresponding to vapour state is given by the relation:  
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oxidizing efficiency, ε - oxidizing energy on completely 
oxidized metal atom, vS - the speed of vaporisation 
frontier, M - atomic mass of the metal, dV - ray of the laser 
beam on the separation frontier between vapour state and 
liquid state and it is calculated with the relation (32); zfr - z 
co-ordinate corresponding to the frontier between vapour 
state and liquid state).  
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where: D is the diameter of the generated laser beam and f 
is the focusing distance of the focusing system. In (27), 
the power losses through electromagnetic radiation, ϕr and 
convection, ϕc were taken into account [8]:  
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where: σ is Stefan-Boltzmann constant; H -  substantial 
thermal transfer constant. The emittance of irradiated area 
was considered equal to 1.  
 

For situation b) the limit conditions are: 
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For situation c) the limit conditions are: 
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3. Determination of separation frontiers  
      equations 
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The problem of determining the frontiers [5,6] occurs 
in moment t ≥ ttop. As initial moment, t = ttop is considered. 
For the next moment, ttop + Δt, the point where the 
temperature is equal to Ttop and which is the origin of co-
ordinates system, transforms itself in a surface whose 
equation must be determined. Based on experimental 
results [6], the shape of this surface is known.  

Therefore, this surface is governed by the equation of 
a rotating ellipsoid having Oz as the symmetry axis. The 
parameters that determine this surface (α, β) are variable 
in time.  

In this case the cylindrical co-ordinates equation for r  
≥  0 will be: 

 
22 zr −β

β
α
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with: α = α(t) and β = β(t). 

In order to determine the parameters α and β, there 
are two conditions. The relations that tie the temperature 
gradient on normal direction surface submit these 
conditions and the movement speed of the surface in this 
direction: 
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where: L is the latent heat of melting or vaporisation and 
vn is the normal movement speed of the frontier. Relation 
(41) is applicable in points Mz(0, z(t)) and Mr(r(t), 0)  in 
order to obtain the points of the frontier, M’

z (0, z(t + Δt)) 
and M’

r(r(t + Δt), 0).  
For point (0, z(t)): 
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With  (43) and (45) it are determine: 
 

α = α(t + Δt) and β = β(t + Δt ): 
( )ttr Δ+=α ,    ( )ttz Δ+=β                   (46) 

 
The initial moment when applying the presented 

procedure is ttop, moment in which z(ttop) = 0 and          

r(ttop) = 0. Because in z = 0 and r = 0 the temperature 
gradient on z direction is, 
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in equation (43) results: 
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where: ρl is the mass density corresponding to liquid 
phase, LTop - the latent heat melting, and: 
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The same procedure is to be followed for t = tvap 

formula. 
 
 
4. Numeric results 
 
The equations of the theoretical proposed model to 

describe the way the material submitted to laser action 
reacts were solved numerically by finite differences 
method.  

The variables and the unknown functions were non-
dimensional and it was chosen a net of equidistant points 
in the pattern presented by the substantial. Because the 
points of the net neighbouring the frontier have the 
distances up to frontier different of the net parameters 
some digitization formula with variable steps have been 
used for them. Because the initial moment of interaction of 
the laser beam with the substantial does not depend on the 
parameters of the discrete net, it was necessary to replace 
it in initial condition on frontier z = 0, the temperature 
gradient reported to z with the temporal temperature 
gradient [2,6]: 

 
tK2zm ⋅=                                  (51) 

 
where zm represents the depth of heat penetration after a t 
irradiation time (the point where temperature starts to be 
neglected as reported to the increasing of temperature on 
the surface). 

Taking into account the relation (51), the temperature 
gradient in relation to z becomes: 
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An algebraic system of equation solved at each time-
step by column method was obtained after digitization and 
application of the limit conditions. The procedure is 
specific to implicit method of solving numerically the 
thermal equation and it was chosen because there were no 
restrictions on the steps in time and space of the net.  

The calculus program was written in FORTRAN 
language and with the help of a PC there were certain 
numeric results obtained which permitted a comparison 
between the proposed method, experimental method and 
analytical method [6,7]. The calculated and compared 
parameters were the cutting speed and the cutting 
thickness.  

The results for different powers of the laser are 
presented in a graphic format.  

As input data there were considered:  
− the substantial constant of iron (for solid, liquid and 

vapour state);  
− the ray of the generated laser beam: D = 10mm;  
− the number of intervals on direction y: N = 32;  
− the number of intervals on direction x: M = 8;  
− the step in time: DELTAT = 10-5s;  
− the maximum thickness of the substantial to be 

worked on: GR = 12mm.  
It was denoted p the pressure of the working gas, 

usually oxygen or nitrogen. Parameter p influences the 
cutting process by means of power flow. 

The temperature distributions at different depths 
within the material, for a laser power PL = 400W, and a 
processing time t = 1ms, are presented in Figs. 1…4.  

 
 

        
 

Fig.1. Temperature distribution for z = 0. 
 

 
 

Fig. 2. Temperature distribution for z = 0.187mm. 
 

 

 
 

Fig. 3. Temperature distribution for z = 0.375mm. 
 

 

                   
 

Fig. 4. Temperature distribution for z = 0.754mm. 
 
 

Figs. 5 and 6 are showing the temperature distribution 
for a laser power PL = 1000W and processing time t = 
10ms. Temperature distribution was represented in two 
situations: at the material surface     and at the material 
evaporating depth (z =  4.192mm). 

 

 
 

Fig. 5. Temperature distribution for z = 0 (PL = 1kW). 
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The temperature distributions at material surface for   
PL = 400W and PL = 1000W are quite identical, as one can 
observe in Figs. 1 and 5. 

 

 
 

Fig. 6. Temperature distribution for z = 4.192mm. 
 
 

Fig. 7 shows the vaporization depth variation as a 
function of laser power, for three values of the processing 
time, and figure 8 presents the vaporization depth 
variation as a function of additional gas, (O2), pressure, for 
three values of the processing time. The vaporization 
depth has a nearly linear increasing with the laser power. 
For an additional gas pressure greater then 2 bars, the 
vaporization depth is quite constant, owed to the 
insignificant variation of the oxidizing efficiency in this 
case (η0 = 0.99…1).  

 
 

 
 
 

Fig. 7. Vaporization depth variation within the material, 
function of the laser power.   

                         

 
  

Fig.8. Vaporization depth variation within the material, 
function of the pressure of the additional gas. 

 

The depths corresponding to the melting and 
vaporization temperatures are: ztop = 4.288mm, 
respectively zvap = 4.192mm. 

The moments when material surface reaches the 
vaporization and melting temperatures are: 

s10181.0t 5
Vap

−⋅= , respective s10132.0t 5
Top

−⋅= . 
The material vaporization depth is depending on the 

processing time, and the considered input parameters as 
well. So, for a 10 times greater processing time and a 2.5 
times greater laser power, one may observe a 10.94 times 
greater vaporization depth, compared with the previous 
case.  

 
 
5. Conclusions 
 
The mathematical model proposed represents a 

method of determining the temperature distribution and 
the cutting thickness when cutting metallic substantial 
with concentrated laser beam assisted by an active gas jet. 
The method of numeric calculation used, in comparison to 
other known methods, has the advantage of approximating 
more properly the real phenomenon, considering the 
simultaneous existence in the substantial in the area of its 
interaction with the laser beam of all three solid, liquid 
and vapour states. In the same respect, it is taken into 
account the effect of de-focusing of the laser beam 
together with its evolution into the material as well as the 
losses of energy through electromagnetic and convection 
radiation. 

The method proposed solves simultaneously the 
thermal equation for all three states (solid, liquid and 
vapour) determining the temperature distribution in the 
substantial and respectively, the thickness of penetrating 
the substantial for a certain cutting time, having been able 
to calculate the speed of substantial vaporising. For a 
better approximation of the real phenomenon, specific 
substantial parameters specific to each phase of the cut 
substantial were considered.  

Among the hypothesis on which the mathematics 
model is based on and hypothesis that need a more 
thorough analysis is the hypothesis on frontiers formation 
between solid state and liquid state, respectively, the liquid 
state and vapour state, supposed to be known previously, 
parameters that characterise the frontiers being determined 
from the thermal regime prior to the calculus moment. 

The indirect results obtained as such (the thickness of 
penetrating the substantial, the vaporisation speed) certify 
the correctness of the hypothesis made with frontier 
formula. The known considering of frontier formula 
necessitated the utilising of the axiom for constructing the 
numeric program: between the frontiers that separate two 
stages, the temperature is always within the value of the 
temperatures on to the two frontiers. 

The results thus obtained are placed within the limits 
of normal Physics, which constitutes a verifying of the 
mathematics model equation. 
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